일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |
- Sharp RD
- 네이버 뉴스
- LU분해
- confounder
- 잔차의 성질
- least square estimation
- 통계
- 회귀불연속설계
- 머신러닝
- 사영
- causal inference
- 누락편의
- rct
- 인과 추론
- residuals
- 크롤링
- HTML
- backdoor adjustment
- 단순선형회귀
- 인과추론
- 최소제곱법
- Omitted Variable Bias
- 교란변수
- Python
- simple linear regression
- Instrumental Variable
- 예제
- 선형대수
- OVB
- 교란 변수
- Today
- Total
목록잔차의 성질 (2)
Always awake,

본 포스팅에서는 이전 포스팅(잔차의 성질 (단순 선형 회귀)) 에서 다룬 잔차의 4가지 성질을 기하학적으로 이해해보는 내용을 작성하겠습니다 이전 포스팅과 마찬가지로 단순 선형 회귀에서 최소제곱법으로 계수를 추정하였을 때의 잔차의 성질에 대해 기술합니다. 단순 선형 회귀의 기하학적 이해 우선 단순 선형 회귀는 아래와 같습니다 $$ Y_i = \beta_0 + \beta_1 x_i + \epsilon_i \ \ \ for \ i=1,2, ... , n$$ $$ Y_1 = \beta_0 + \beta_1 x_1 + \epsilon_1 \\ Y_2 = \beta_0 + \beta_1 x_2 + \epsilon_2 \\ ... \\ Y_n = \beta_0 + \beta_1 x_n + \epsilon_n$$ 이는..
본 포스팅에서는 단순 선형 회귀의 잔차(오차의 추정량) 의 네 가지 성질에 대해 정리합니다. 단, 계수 추정 방식이 최소제곱법(Least Sqaure Estimation) 인 경우 잔차는 아래의 성질을 갖습니다. 단순 선형 회귀 계수 추정 아래와 같이 단순 선형 회귀 식이 있습니다 $$Y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$ 최소제곱법을 이용하여 추정한 $\hat{\beta_0}$ 와 $\hat{\beta_1}$ 은 아래와 같습니다 $$ \hat{\beta_1} = \frac{S_{xY}}{S_{xx}} = \frac{\sum_i^n{(x_i - \bar{x})(Y_i - \bar{Y})}}{\sum_i^n{(x_i - \bar{x})^2}} $$ $$ \hat{\be..